
INTRODUCTION

Regeneration of ornamental plants in vitro has been
achieved in many species on culture medium con-
taining auxins and cytokinins, and from various
explant sources including tuber segments, shoot
tips, stems (node and internode), leaf tissue,
peduncles and floral parts (Teixeira da Silva, 2004;
Rout et al., 2006). Plant regeneration from petals
has been reported in several ornamental species:
Pelargonium (Bennici,1974), Chrysanthemum
morifolium (Bush et al., 1976; Mandal and Datta,
2005), C. coccineum (Fujii and Shimizu, 1990),
Hemerocallis (Heuser and Apps, 1976),
Saintpaulia ionantha (Vazques and Short, 1978),
Dianthus caryophyllus (Kakehi 1979; Fisher et al.,
1993; Miller et al., 1991; Nugent et al., 1991;
Simard et al., 1992), Rosa hybrida (Noriega and
Sondahl, 1991; Murali et al., 1996), Cyclamen per-
sicum (Karam and Al-Matahoub, 2000), Araujia
sericifera (Torne et al., 1997) and Rhododendron
simisii (Schepper et al., 2004). It has also been
induced in five Sedum species (Wojciechowicz,

2007). These studies show the high regeneration
potential of petals, and focus on enhancement of the
plants' ornamental value and genetic variation. In
carnation, petal-derived regenerants were charac-
terized by high variation of features including plant
height and flower color (Biautti et al., 1986). In cul-
ture of Rhododendron simisii, tetraploid plants
were regenerated from the margin of differently col-
ored petals (Schepper et al., 2004). 

Each year millions of ornamental plants are
produced by in vitro culture (Rout et al., 2006). Only
eight Sedum species have been propagated this way:
S. sieboldii (Uhring, 1983), S. telephium, (Brandao
and Salema, 1977), S. erythrostichum (Yoon et al.,
2002), S. acre, S. aizoon  S. floriferum, S. gracile
and S. spectabile (Wojciechowicz, 2007).

Many Sedum species are ornamental plants
which tolerate drought and poor, stony soils
(Stephenson, 1994; Yoon et al., 2002; Andry et al.,
2005), so they are often planted in gardens, espe-
cially rock gardens. Many highly decorative Sedum
species are also cultivated as indoor plants
(Gudrupa et al., 2002).
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A new market for the horticulture field in Europe
and the United States is presented by green roofs (van
Woert et al., 2005; Getter and Rowe, 2006).
Establishing plant material on rooftops provides many
ecological and economic benefits, including storm-
water management, energy conservation, mitigation of
the urban heat island effect, and increased longevity of
roofing materials, as well as providing a more aesthet-
ically pleasing environment in which to work and live
(Monterusso et al., 2005). Because environmental
conditions are often more extreme on rooftops, many
xerophytic plants, especially Sedum, are ideal for
extensive green roofs because they are physiologically
and morphologically adapted to withstand drought
(Durhman and Rowe, 2006).

Elaborating a regeneration protocol and analyzing
the course of morphogenesis are important steps
toward using in vitro culture to obtain plants with
novel, desirable traits, whether by exploiting somaclon-
al variation or by applying molecular techniques. 

The ability to regenerate plants and the high
regeneration potential of flower part explants in
Sedum has been shown elsewhere (Wojciechowicz,
2007). Here I use light and electron microscopy to
study the course of morphogenesis in cultures of
petal explants from three Sedum species: S. aizoon,
S. gracile and S. spectabile. 

MATERIAL AND METHODS

EXPLANT AND IN VITRO CULTURE CONDITIONS

Plants of S. aizoon, S. gracile and S. spectabile
were grown at the Botanical Garden of Adam
Mickiewicz University in Poznań, Poland. Flower
buds were harvested just before anthesis. The buds
were surface-sterilized in 70% (v/v) ethanol for 30 s,
washed with sterile deionized water, and immersed
in sodium hypochlorite solution (0.15% available
chlorine) for 8 min. The petals were then excised
and placed horizontally with the abaxial side in con-
tact with the culture medium.

All experiments were carried out on MS medi-
um (Murashige and Skoog, 1962). The medium was
supplemented with 30 g l-1 sucrose, solidified with
8.0 g l-1 agar, and pH was adjusted to 5.8. The plant
growth regulators added were BAP (3.0 mg l-1)
and/or IBA (0.1, 0.5, 1.0 or 1.5 mg l-1).

Cultures were grown with a 16 h photoperiod
under cool white fluorescent lamps (35 μmol m-2 s-1)
at 24°C and 70–80% relative humidity. 

MICROSCOPIC OBSERVATIONS

Explants were collected from the in vitro cultures at
various time intervals. Initial petal analysis was
done in parallel. Forty samples of each investigated
species were examined. 

The material was fixed for 2 h at room temper-
ature in a solution containing 2% glutaraldehyde
and 2% paraformaldehyde in 0.05 M sodium
cacodylate buffer (pH 6.8). Samples were then
rinsed three times in the same buffer. Samples for
SEM and TEM were postfixed for 1 h at 4°C in a
solution containing 1% osmium tetroxide in 0.05 M
sodium cacodylate buffer (pH 6.8).

Light microscopy

For histological analysis, both paraffin and thin sec-
tions were prepared. 

For paraffin sections the fixed material was
dehydrated in an ethanol series (5, 10, 30, 50, 70,
80, 90, 96, 100%). The samples were embedded in
paraffin and cut into sections 10 μm thick. The sec-
tions were fixed on glass slides, double stained with
safranin and fast green (Jensen, 1962), and mount-
ed in entellan.

For thin sections the fixed petals were embed-
ded in a mixture of low-viscosity epoxy resins
(Spurr, 1969). The samples were cut into sections
1.5 μm thick, fixed on glass slides and stained with
methylene blue and basic fuchsin (Humprey and
Pittman, 1974).

The preparations were examined under a Zeiss
Axioscop microscope. Specimens were photographed
using an OPTON Axioscop microscope fitted with a
Zeiss MC 80 DX camera, on Fujifilm 100.

Scanning electron microscopy (SEM)

After postfixing, the dehydrated petals were dried in
liquid carbon dioxide. The samples were coated with
gold and examined in a Phillips SEM-515 scanning
electron microscope at 7.5 kV accelerating voltage.
Images were stored digitally.

Transmission electron microscopy (TEM)

After postfixing, the petals were contrasted with 2%
uranyl acetate (pH 5.0), embedded in a mixture of low-
viscosity epoxy resins (Spurr, 1969) and cut into sec-
tions 90 nm thick. The sections were mounted on cop-
per grids, counterstained in lead citrate, and exam-
ined under an EOL JEM 1200 EXII transmission elec-
tron microscope at 80 kV accelerating voltage. 

RESULTS

INITIAL EXPLANTS

SEM of epidermis showed that the cells from the
base of the petals were elongated along the petal
axis. The external surface of the cells was smooth
(Fig. 1). Cells from above the base of the petals had a
folded cell surface. In S. gracile the cells were papil-
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lose, and folds on the cell surface radiated from their
center in a star-like pattern (Fig. 2). In S. aizoon and
S. spectabile the cells were elongated, and the folds
lay parallel to the long axis of the cell (Fig. 3).

In petal cross section there was a single-layered
epidermis surrounding the parenchymatous cells
(Fig. 4). The vascular bundles in the parenchyma
were visible. The parenchymatous cells were loosely
arranged, highly vacuolated and thin-walled (Figs. 4,
5). Sparse chloroplasts, mitochondria, endoplasmic
reticulum and dictyosomes of the Golgi apparatus
and electron-dense granules were concentrated in
the thin band of cytoplasm near the cell wall (Figs.
5–7). The oval nucleus contained one or two nucle-
oli (Fig. 6). The stroma of the chloroplasts included
starch grains and numerous plastoglobuli (Fig. 7).
The thylakoid  system was poorly developed in both
the stroma and grana (Figs. 6, 7). Nuclei, mitochon-
dria and leucoplasts were visible in the vacuolated
cells of the epidermis (Fig. 8).

ORGANOGENESIS IN CULTURE

In the species included in this study, IBA at a con-
centration of 1.5 mg l-1 in combination with BAP
induced indirect organogenesis. Lower concentra-
tions of IBA induced direct organogenesis (Tab. 1).

Direct organogenesis in culture

Cell division in the epidermal cells at the base of the
S. aizoon petal was detected with SEM as early as day
3 of culture on medium containing BAP and 1.0 mg l-l

IBA. In S. spectabile and S. gracile, epidermal cell
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FFiiggss..  11––33. SEM micrographs of initial petals of Sedum
species. FFiigg..  11.. Basal part (bp) and papilliform cells (pc) on
the adaxial surface of S. gracile. Glandular trichomes (t) on
the abaxial surface. Bar = 300 μm. FFiigg..  22. Papilliform adax-
ial epidermal cells of S. gracile with radial folds in the cell.
Bar = 10 μm. FFiigg..  33. Adaxial epidermal cells of S. aizoon
with parallel folds in the cell wall. Bar = 10 μm. 

TABLE. 1. Effect of growth regulators BAP 3.0 mgl-1 and
IBA (0.1–1.5 mg·l-1) on morphogenesis induction in petal
cultures of Sedum spp. 

D – direct  organogenesis; ID – indirect organogenesis; SE –
somatic embryogenesis; EP – epidermis and parenchyma tissue; 
P – parenchyma tissue.



division was detected on day 4 on the same medium
(Fig. 9). Cross sections of the epidermis in S. gracile
revealed cells that had undergone anticlinal division
on day 6 on medium containing 0.5 mg l-1 IBA. The
epidermal cells were still papillose (Fig. 10).

Histological sections showed differentiation and
cell division starting earlier in parenchymatous cells
than in epidermis. In both S. aizoon and S.
spectabile, cell division was detected in the subepi-
dermal layer of the parenchyma on day 2 of culture.
In S. gracile, parenchymatous cells underwent divi-
sions on day 3. 

The effect of growth regulators on the dediffer-
entiation of epidermal and parenchymatous cells
into meristematic cells was confirmed by TEM. The
meristematic cells were small and contained minute
vacuoles distributed throughout the dense cyto-
plasm. The nucleus was centrally located and con-
tained a large, distinct nucleolus (Fig. 11). The
meristematic cells contained abundant mitochon-
dria and a well-developed endoplasmic reticulum
and Golgi apparatus, which indicates that they were
metabolically active (Fig. 11).

The first cell divisions were anticlinal in epider-
mal cells, and periclinal in parenchymatous cells
(Fig. 12). Regular anticlinal divisions of the epider-
mal cells gave rise to the epidermis of the newly
formed adventitious buds. Periclinal divisions in the
parenchymatous cells gave rise to ground tissue of
the differentiating buds. Within several days, meris-
tematic strands began to form along the petal axis.
These strands consisted of small cells regularly
arranged in rows (Fig. 12). 

In S. aizoon and S. spectabile, strands of
meristematic cells in the petals were visible on day
3 of culture on media containing either 0.1 or 
1.0 mg l-1 IBA (Fig. 12). On media containing 
1.0 mg l-1 IBA, patches of intensively colored cells
could be seen on the surface of the meristematic
strands. These cells gave rise to primordia of adven-
titious buds (Fig. 13).

SEM showed that the developing leaf primordia
of adventitious buds tended to retain the whorled,
alternate leaf arrangement characteristic for the
genus Sedum (Fig. 14).

In the three Sedum species, adventitious buds
with a well-defined shoot apex, leaf primordia and two
procambial strands appeared, as visible on histological
sections, between days 9 and 17 of culture. The exact
time of their appearance depended on the species and
on the composition of the medium (Fig. 15).

Indirect organogenesis in culture

Callus development was preceded by divisions of the
parenchymatous cells, which began on day 3 of cul-
ture in S. spectabile and on day 5 in S. aizoon and
S. gracile (Tab. 1). In S. gracile, nests of callus tis-
sue were distributed among the parenchymatous
cells on day 8 (Fig. 16).

In all three species, vascularization occurred in
the callus tissue. Callus also contained numerous
small cells arranged in regular rows, and highly vac-
uolated cells with a peripherally located nucleus
(Fig. 16).

At the periphery of the callus tissue there were
groups of intensively stained cells which gave rise to
adventitious buds. In S. gracile, these cells were
seen as early as day 8 of culture. Tracheal cells pres-
ent in the callus were probably the source of the vas-
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FFiiggss..  44––88.. Histology and cytology of initial petals of Sedum
species. FFiigg..  44.. Cross section through petal of S. gracile –
abaxial (ab) and adaxial (ad) epidermis and parenchyma-
tous cells. Bar = 10 μm. FFiigg..  55.. Parenchyma of S. gracile
with intracellular spaces (is), nucleolus (n) and chloro-
plasts (ch). Bar = 2 μm. FFiigg..  66.. Parenchymatous cell of 
S. aizoon with nucleus (n) and nucleolus (nu), chloroplast
(ch) with plastoglobuli (p), mitochondria (m) and dic-
tyosome (d). Bar = 0.2 μm. FFiigg..  77.. Chloroplasts with
starch grains (s) and plastoglobuli (p) in parenchymatous
cell of S. aizoon. Bar = 0.5 μm. FFiigg..  88.. Adaxial epidermal
cell of S. gracile with nucleus (n), nucleolus (nu), leu-
coplast (l) and mitochondria (m) in cytoplasm. Folds (f) in
cell wall. Bar = 0.05 μm. 



Morphogenesis in petal cultures of Sedum 87

FFiiggss..  99––1144.. Direct organogenesis in petal explants of Sedum species. FFiigg..  99.. Divisions of epidermal cells on adaxial sur-
face of S. spectabile explant on day 4 of culture. White line indicates sectors of cells that have arisen by cell division.
Bar = 30 μm. FFiigg..  1100.. Clones of epidermal cells formed after anticlinal divisions on adaxial side of S. gracile on day 6
of culture. Bar = 10 μm. FFiigg..  1111..  Meristematic cells with dense cytoplasm and small vacuoles (v) after dedifferentiation
induced by growth regulators in S. gracile on day 7 of culture. n – nucleus; nu – nucleolus; m – mitochondrion. Bar =
0.5 μm. FFiigg..  1122.. Intensive subepidermal periclinal cell divisions and epidermal anticlinal cell divisions (→) in S. spectabile
on day 3 of culture. Bar = 20 μm. FFiigg..  1133.. Intensive cell division and protruding bundles of two adventitious buds (→) on
adaxial surface of S. spectabile on day 6 of culture. Bar = 20 μm. FFiigg..  1144.. Leaf development of two adventitious buds of
S. spectabile on day 14 of culture. Bar = 300 μm. FFiigg..  1155.. Adventitious bud with shoot apex (sa), leaf primordia (lp), and
two procambial bundles (pb) developed at basal part of S. spectabile on day 16 of culture. Bar = 200 μm.



cular tissue for developing adventitious buds. In S.
aizoon the development of adventitious buds began
on day 8 (Fig. 17). In S. spectabile, organogenesis
proceeded with intense proliferation of callus tissue.
In the studied Sedum species, SEM showed adven-
titious buds in the callus between days 12 and 20. 

SOMATIC EMBRYOGENESIS IN CULTURE

In S. aizoon and S. spectabile, both adventitious
buds and somatic embryos were formed when the
culture medium contained 3.0 mg l-1 BAP and 
0.5 mg l-1 IBA. The embryos formed at the explant
base, near the vascular bundle on the adaxial side of
the petal (Fig. 18). Mature embryos with well devel-

oped cotyledons protruded between days 13 and 16
culture on the adaxial surface of explants.

Histological analysis revealed that somatic
embryos started to develop by direct embryogenesis at
the adaxial subepidermal cells of the parenchyma on
day 5 in S. spectabile and day 8 in S. aizoon (Tab. 1,
Fig. 19). Somatic embryos at various stages of devel-
opment were visible a few days later (Fig. 20).

DISCUSSION

In the Sedum species studied, plants were regener-
ated by direct organogenesis, indirect organogenesis
or somatic embryogenesis, depending on the con-
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FFiiggss..  1166––2200.. Indirect organogenesis and direct somatic embryogenesis in petal explants of Sedum species. FFiigg..  1166..
Transverse section through the basal part of S. gracile explant on day 8 of culture. Callus centers with tracheids (tr)
and meristematic cells (mc). Bar = 100 μm. FFiigg..  1177. Adventitious bud formed in callus at basal part of S. spectabile
explant on day 16 of culture. pb – procambial bundle. Bar = 100 μm. FFiigg..  1188. Petal of S. aizoon with somatic embryos
developing near vascular bundles on day 9 of culture. Bar = 1 mm. FFiigg..  1199. Proembryo developing in adaxial subepi-
dermal parenchyma in longitudinal section of S. spectabile explant on day 5 of culture Bar = 25 μm. FFiigg..  2200.. Embryos
at different stages of development in longitudinal section of S. spectabile explants on day 9 of culture. pb – procambial
bundle. Bar = 100 μm. 



centration of IBA in the culture medium. This is the
first report of plant regeneration by somatic embryo-
genesis in Sedum. In earlier studies (Brandao and
Salema, 1977; Yoon et al., 2002), S. erytrostichum
plants were regenerated from leaf segments by
direct organogenesis, and S. telephium plants were
regenerated from leaf tissue cultures by indirect
organogenesis.

In this study the anatomical and histological
aspects of in vitro regeneration were analyzed by
light microscopy, scanning and transmission elec-
tron microscopy. The initial petals of the studied
species were anatomically similar to those of many
other dicotyledonous plants (Esau, 1973). The cells
of the petals were differentiated, and the cell walls
were folded on the exterior layer of epidermis except
at the base of the petal.

The parenchyma of the petals consisted of sev-
eral layers of loosely arranged cells, which is typical
for dicotyledons that do not have a fleshy corona
(Esau, 1973). When examined with various types of
microscopes, the cells of the initial explants were
seen to be differentiated, and no meristematic activ-
ity was observed at the base of the petals. In culture
in vitro on medium containing BAP and IBA,
organogenesis began with the division and differen-
tiation of cells in the epidermis and parenchyma.
Petals placed on medium without growth factors did
not respond (Wojciechowicz, 2007).

Induction of morphogenic events proceeded
rather quickly in the petal cultures. In greenhouse
carnations the cells at the base of the petal started
to divide on day 6 of culture, and adventitious buds
developed by direct organogenesis within two
weeks of culture (Miller et al., 1991; Nugent et al.,
1991). The nucleus and nucleoli of the epidermal
and parenchymatous cells of Dianthus caryophyl-
lus enlarged on day 3 of culture, and active cell
division in the epidermis and subepidermal
parenchyma was in progress on day 6. Leaf pri-
mordia and shoot apices formed on day 9, and
adventitious buds were visible on day 14 (Simard
et al., 1992). In Chrysanthemum coccineum, cal-
lus was formed one week after the petals were
placed on culture medium (Fujii and Shimizu,
1990). In Sedum spectabile, callus was already
developed on day 3 of culture.

Regeneration proceeded even faster in the
Sedum species included in this study. In 
S. spectabile, for example, the parenchymatous
cells at the base of the petal began to divide on day
2 of culture, and organogenesis began on day 3.

Fast regeneration in the Sedum species was
confirmed by SEM. Active cell division was observed
on day 3 of culture in S. aizoon, and on day 4 in 
S. spectabile. In petal cultures of Dianthus
caryophyllus, meristematic activity started on day 8
of culture (Fisher et al., 1993).

During differentiation of the meristematic cells,
the size of the progeny cells decreased because the
rate of cell division exceeded the rate of cell growth.
The progeny cells did not grow to the size of the
parental cells, and this gave rise to sectors of meris-
tematic cells. The presence of these sectors in the
differentiating cellular clones indicated that many
cells were in the initial phase of direct organogene-
sis in the Sedum petals. Periclinal divisions of cells
led to adventitious bud differentiation. In tulip stem
fragments, periclinal divisions in the parenchyma-
tous cells also initiated direct organogenesis of
shoots (Wilmink et.al., 1995). On the other hand, in
cultures of leaflets derived from mature zygotic
embryos of Arachis hypogaea, periclinal divisions
in the parenchymatous cells gave rise to somatic
embryos, in contrast to organogenesis which began
with anticlinal divisions (Chengalrayan et al., 2001).

SEM of the petals showed the spatial distribu-
tion of the leaf primordia in the Sedum species: they
were arranged cross-wise in the shoot buds; this
matches the arrangement observed in nature.

TEM of the Sedum petals revealed starch grains
in the plastids of the epidermal and parenchyma-
tous cells. Plastids in petals often contain starch,
which enables the petals to expand rapidly as the
flower blossoms (Esau, 1973). Starch was present
because the Sedum petals used in this study were
collected immediately before corolla opening, which
increased the probability of successfully inducing
organogenesis.

The Sedum petals were capable of undergoing dif-
ferent morphogenetic processes, including direct
organogenesis, indirect organogenesis and somatic
embryogenesis. Sedum petals may prove useful in
future studies on induction of genetic variability by
mutation or transformation. They may also represent
a valuable source of somaclonal variation. The petals
of the Sedum species chosen for this study may also
be used in research on how induction by growth regu-
lators affects the capacity of the cells to undergo mor-
phogenetic transformation toward a desired result. 

These histological investigations indicated that
desired morphogenic responses can be achieved in
Sedum petal cultures in vitro by manipulation of
IBA concentrations in the medium. The simple
anatomical structure of petals and the fast response
of petal cells to the applied growth regulator con-
centrations yield useful explants for basic develop-
mental studies and horticultural breeding.
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