

Antioxidant Activity of Flavonoids of Different Polarity, Assayed by Modified ABTS Cation Radical Decolorization and EPR Technique

KRZYSZTOF PAWLAK¹, WIESLAWA BYLKA², BEATA JAZUREK¹, IRENA MATLAWSKA², MARIA SIKORSKA², HENRYK MANIKOWSKI¹, AND GRAZYNA BIALEK-BYLKA¹

¹Department of Technical Physics, Poznan University of Technology, ul. Nieszawska 13 A, 60-965 Poznan, Poland
²Department of Pharmacognosy, Poznan University of Medical Sciences, ul. Swiecickiego 4, 60-781 Poznan, Poland

Received August 20, 2009; revision accepted December 9, 2009

Modified ABTS cation radical decolorization assay and EPR technique were applied to screen the antioxidant activity of three flavonoids with different polarity: 7-O- β -[2-O-feruloyl- β -glucuronopyranosyl (1 \rightarrow 2) glucuronopyranoside] (tricine), 4'-methoxy-5,7-dihydroxyflavone 6-C- β -glucopyranoside (isocytisoside) and I 3' II 8 biapigenine (amentoflavone), with nonpolar all-trans β -carotene used as standard carotenoid molecule. The ABTS [2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid] cation radical decolorization assay was modified as follows: (1) measurements extended up to 8 days after preparation, (2) method adapted for flavonoids with different polarity and β -carotene, (3) concentrations in the 0.01-10 μ M range of both trolox and antioxidants in order to use the same experimental conditions for both this technique and EPR measurement.

Key words: 7-*O*- β -[2-*O*-feruloyl- β -glucuronopyranosyl (1 \rightarrow 2) glucuronopyranoside] (tricine), 4'-methoxy-5,7-dihydroxyflavone 6-*C*- β -glucopyranoside (isocytisoside), I 3' II 8 biapigenine (amentoflavone), all-*trans* β -carotene, ABTS cation radical, TEAC, EPR technique, free radicals, oxidation.

e-mail: bialek-bylka@put.poznan.pl