
INTRODUCTION

Almost all environmental stresses induce oxidative
stress in plants as an early and rapid response
(Bolkhina et al., 2003). Under drought stress, over-
production of highly reactive oxygen species (ROS)
in chloroplasts, represented by the superoxide
anion (O2

·-), hydrogen peroxide (H2O2), hydroxyl
radical (·OH) and singlet oxygen (1/2O2) has been
reported (Smirnoff, 2002; Foyer and Noctor,
2003). This effect was also observed in chloroplasts
of plants under enhanced UV-B irradiation (Santos
et al., 2004). Plants have an endogenous mecha-
nism to protect cellular and subcellular systems
from the cytotoxic effects of ROS. Antioxidant
enzymes such as superoxide dismutase (SOD),
catalase (CAT), Halliwell-Asada pathway enzymes
and peroxidases (POX) are widely distributed in all
higher plants and are involved in decomposition of
O2

·- and H2O2 (Foyer and Noctor, 2000).
Peroxidases, especially their anionic forms located
in cell walls, are engaged in peroxidation of pheno-
lic compounds in the presence of H2O2 (Grabber et
al., 1997). These processes cause lignification of
the cell wall, creating a barrier against pathogen
attack (Lewis and Yamamoto, 1990), and also

increasing the rigidity of the cell wall under
drought conditions (DaMatta et al., 2002). 

Enhanced UV-B radiation or drought can
decrease net photosynthetic capacity and lead to the
reduction of root, stem and leaf biomass and yield.
Such effects were shown to be greater under a com-
bination of the two stresses than under single ones
(Feng et al., 2007). The results suggested that the co-
stresses of supplementary UV-B irradiation and
drought functioned synergistically, and that one of
them could differentially affect the inhibitory effects of
the other. Recent studies indicate that the response of
a plant to a combination of two different abiotic
stresses is unique and cannot be extrapolated from
the response to each stress applied alone. Tolerance
to a combination of stress conditions should be the
focus of research aimed at developing plants with
enhanced tolerance to naturally occurring environ-
mental conditions. Surprisingly, the co-occurrence of
different stresses is rarely addressed by molecular
biologists, and its physiological aspects are also insuf-
ficiently understood (Mittler, 2006).

This study was intended to determine how two
environmental stresses, water deficit and UV-B radi-
ation, applied alone or together, can alter the activi-
ty of the antioxidant enzymes SOD, glutathione
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reductase (GR) and guaiacol peroxidase (GPX) in
cucumber leaves. Also investigated was how these
stresses influence some acclimatization changes
within the cell walls of cucumber leaves, based on
syringaldazine peroxidase (SPX) activity.

MATERIALS AND METHODS

PLANT MATERIAL

Seeds of cucumber (Cucumis sativus cv. Dar) were
sown in a pot containing 2.0 l loessial soil and
allowed to germinate and develop in a growth cham-
ber with a 16 h photoperiod (250 μE   m-2·s-1 pho-
tosynthetically active radiation, PhAR) at 24/20°C
(day/night) and 60–70% humidity. Water content in
the soil was maintained at 60% of holding capacity.
One-month-old seedlings were divided into four
groups, the control and three groups subjected to
the stress conditions: UV-B radiation, water deficit,
and water deficit and UV-B radiation combined.

STRESSES

For the UV-B stress treatment, UV-B radiation was
supplied by Philips TL 20 W/01 RS lamps at 16 
KJ m-2 d-1 (8 h daily) for 9 days. The photon flux
density was 3.25 μmol m2 s-1 at 315 nm. For the
water deficit treatment, water supply was restricted,
reducing soil water content to 40% of holding capac-
ity. The two stresses were applied, alone or com-
bined, for 9 days, after which the plants were
watered well and UV-B irradiation was ended in the
respective treatment groups, and they were kept for
two more days of post-stress physiological measure-
ments. Control plants were watered well and kept
under PhAR only. The third fully expanded leaf of
each seedling was used for analysis. They were sam-
pled at the outset of the experiment, on days 2, 5, 7
and 9 of the stress treatment, and on day 11.

RELATIVE WATER CONTENT (RWC)

Relative water content, indicating the level of water
stress in leaves, was estimated according to
Weatherley (1950) and calculated according to the
formula: RWC = [(fresh weight – dry weight) / (fresh
weight at full turgor – dry weight)] · 100%.

ENZYME ACTIVITY

Superoxide dismutase (SOD) activity (EC 1.15.1.1)
was estimated according to Beauchamp and
Fridovich (1971). Leaves (200 mg) were homoge-
nized with 4 mL (w/v) of 50 mM Na-phosphate
buffer, pH 7.0, containing 1% (w/v) polyvinyl-
polypyrrolidone, 1 mM EDTA-Na and 0.5 M (w/v)

NaCl. The reaction mixture contained 50 mM Na-
phosphate buffer, pH 7.8, 0.1 mM (w/v) EDTA-Na,
13 mM (w/v) methionine, 25 μM (w/v) nitro blue
tetrazolium (NBT), 2.4 μM (w/v) riboflavin and 0.03
mL enzyme extract. The addition of riboflavin and
the placement of tubes under fluorescent lamps
ensuring irradiation intensity of 185 μE·m-2·s-1

started the reaction of blue formazan accumulation.
The increase in optical density was almost linear for
at least 10 min. Tubes without the enzyme devel-
oped maximum color. Absorbance at 560 nm was
recorded and 1 unit of activity was estimated as the
enzyme quantity reducing absorbance to 50% of the
value for tubes lacking the enzyme. 

Guaiacol peroxidase (GPX) (EC 1.11.1.7) meas-
urement was based on the method of
Hammerschmidt et al. (1982). Leaves were homo-
genized in ice-cold 50 mM K-phosphate buffer, pH
7.5, with the addition of 5% (w/v) polyvinyl-
polypyrrolidone (PVPP). Enzyme assays were pre-
pared by the addition to a glass cuvette of 0.5 mL 50
mM K-phosphate buffer, pH 7.5, 0.5 mL extract, 0.5
mL 3.4 mM guaiacol and 0.5 mL 0.9 mM H2O2.
Absorbance at 480 nm was measured and guaiacol
oxidation was expressed as units per minute per mg
protein. One unit of enzyme activity caused an
increase of absorbance by 0.1 per min.

Glutathione reductase (GR) (EC 1.6.4.2) was
measured using the method described by Smirnoff
and Colombe (1988). Leaves were homogenized in 5
vols of ice-cold extractant. The extraction medium
contained 100 mM K-phosphate buffer, pH 7.8, 
1 mM diethylenetriamine penta-acetic acid (DTPA),
5% polyvinylpyrrolidone (PVP), 5 mM mercap-
toethanol and 5% (v/v) glycerol. The homogenate was
centrifuged at 4°C for 30 min at 25,000 g. The reac-
tion mixture contained 50 mM K-phosphate buffer,
pH 7.5, 0.1 mM NADPH, 0.5 mM oxidized glu-
tathione and 100 μl extract per 1 ml reaction mix-
ture. The rate of NADPH oxidation was monitored at
340 nm. 

Syringaldazine peroxidase (SPX) (EC 1.11.1.7)
was determined according to Imberty et al. (1985).
Leaf samples (400 mg) were extracted in 100 mM K-
phosphate buffer, pH 7.0, containing 0.5% polyeth-
ylene glycol (PEG 6.000) and 40 mg Polyclar AT.
After centrifugation at 10,000 g for 15 min at 4°C,
the extract (0.5 ml) was mixed with 2 ml 100 mM K-
phosphate buffer, pH 6.0, 0.5 ml 4.0 mM H2O2, and
50 μl syringaldazine (3.1 mg dissolved in 1 ml
methanol and mixed with 2 ml dioxane). Enzyme
activity was calculated as absorbance increase at
530 nm. 

PROTEIN CONTENT

Protein content in the extracts was determined
according to Bradford (1976). 
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STATISTICAL ANALYSIS

Analyses were done in replicates and the data are
presented as means ±SD. Experimental data were
subjected to one-way ANOVA and the significance of
differences between means was determined by
Tukey's multiple range test. 

RESULTS

Water deficit greatly lowered the RWC of cucumber
leaves, by as much as 60% at the end of the stress
period (Fig. 1a). UV-B radiation decreased the leaf
water content only to 85%, but both stresses together
reduced it to 75% on the 9th day of stress. After

rewatering or/and withholding excess UV-B radia-
tion, the water content of leaves generally returned
to the control level. In well-watered plants, RWC
remained above 90% throughout the experimental
period.

In the leaves of control plants, dry weight was
9–10% of fresh weight (Fig. 1b). Under stress, dehy-
dration of plant tissues caused a significant increase
in this parameter versus the control. The effect was
more pronounced in the leaves of cucumber plants
under water stress (19–22%) than under UV-B irra-
diation (16–17%) and under water stress/UV-B co-
treatment (14–18%). In leaves under UV-B stress
this effect persisted at almost the same level (16%)
after recovery of RWC to over 90%.
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FFiigg..  11.. Changes in relative water content (RWC) (aa) and dry weight content (%) under progressive UV-B, water deficit and
co-stresses in cucumber leaves (bb). Measurements were made from days 0 to 9 of stress, and 2 days after stress treat-
ment. Values are means ±SE (n = 3). Significance of differences between stressed and control plants: *p<0.05, **p<0.01.
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FFiigg..  22.. Effect of progressive UV-B, water deficit and co-stresses on antioxidant enzyme activity in cucumber leaves. (aa)
Superoxide dismutase (SOD), (bb) Guaiacol peroxidase (GPX), (cc) Glutathione reductase (GR). Measurements were made
from days 0 to 9 of stress, and 2 days after stress treatment. Values are means ±SE (n = 5). Significance of differences
between stressed and control plants: *p<0.05, **p<0.01.



Stress-induced alteration of antioxidant
enzymes was observed (Fig. 2): the highest (triple)
increase was in GPX; SOD and GR activity dou-
bled versus the control. SOD activity (Fig. 2a)
greatly increased under drought stress on day 7.
UV-B radiation did not cause such a significant
increase on day 7. Under combined stresses, SOD
activation was observed earlier, on day 2. In con-
trol plants, activity was stable throughout the
experiment. The highest increase in GPX activity
(Fig. 2b) was recorded on day 7, and in plants
under water deficit it reached the highest level; on
that day it was intermediate under UV-B radiation
and lowest under drought and UV-B co-treatment.
After rewatering and/or ending the UV-B treat-
ment, GPX activity dropped to the control level.
The highest increase in GR activity (Fig. 2c) also
occurred on day 7 of drought; it was lower in
plants under UV-B, and lowest (60) under com-
bined drought and UV-B. After withdrawal of the
stresses, GR activity decreased to the control level
except in water-stressed plants, in which it
remained slightly higher.

The applied stress factors altered the activity of
syringaldazine peroxidase (Fig. 3). The highest
increase versus the control was measured on day 7
of drought; it was lower after UV-B radiation and
combined drought and UV-B. On day 11 of the
experiment, that is, 2 days after withdrawal of the
stresses, enzyme activity decreased to the control
level. The enhanced SPX activity suggests intensifi-
cation of cell wall component synthesis, increasing
cell wall rigidity. 

DISCUSSION

Cucumber is a crop plant relatively susceptible to
unfavorable environmental conditions; it is often
chosen for studies investigating the reaction to one
or more stress factors (Yinan et al., 2005; Kataria et
al., 2007). 

Our earlier work estimated ROS level, antioxi-
dant system activity and polyamine level in water-
stressed cucumber seedlings (Kubiś, 2008). Under
natural conditions stress factors hardly ever act sep-
arately. Water deficit stress is often accompanied by
excess radiation (light and UV-B) and heat, so the
reaction of cucumber plants to a combination of soil
drought and enhanced UV-B radiation is a subject of
interest. 

Progressive stress conditions caused a slow
decrease of leaf water content (Fig. 1a) and an
increase of dry weight (Fig. 1b) in cucumber leaves,
the effect being most pronounced under drought
treatment. Water deficit, UV-B radiation and co-
stresses induced changes in scavenging system
enzymes (Fig. 2). SOD (Fig. 2a), GPX (Fig. 2b), and
GR activity (Fig. 2c) generally increased, but the
stress-dependent alterations did not occur at the
same time of stress treatment: SOD activity
increased earlier (day 2) than GPX and GR (days 5
and 7).

These results support the suggestion (Elstner,
1991) that SODs constitute the first line of defense
against oxidative stress. After 4 days of water stress
treatment (soil drought), a similar effect, increased
SOD activity, was recorded in barley (Smirnoff,
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FFiigg..  33. Effect of progressive UV-B, water deficit and co-stresses on syringaldazine peroxidase (SPX) activity in cucumber
leaves. Measurements were made from days 0 to 9 of stress, and 2 days after stress treatment. Values are means ±SE
(n = 5). Significance of differences between stressed and control plants: *p<0.05, **p<0.01. 



1993; Acar et al., 2001), tomato (Bowler et al.,
1992), sorghum (Jagtap and Bhargava, 1995) and
wheat (Sairam and Srivastava, 2001). Short-term
experiments (up to 3 days) using PEG as an
osmoticum produced no clear results on the effect of
water deficit on SOD activity (Ahuja and Kaur, 1985;
Badiani et al., 1990; Quartacci and Navari-Izzo,
1992), while rapid and intensive desiccation of
seedlings subjected to 24 h water stress triggered
down-regulation of SOD activity in earlier studies
using barley (Kubiś, 2005) and cucumber (Kubiś,
2008). These results mean that treatment time is
significant in the triggering of SOD activation. 

Earlier work on barley found similar increases
of GPX and GR activity (Kubiś, 2001, 2003) and
cucumber (Kubiś, 2008). Bandurska (2002)
reported that two barley genotypes subjected to
osmotic stress showed similar changes in guaiacol
peroxidase activity. Some authors measured guaia-
col peroxidase activity and found neither an
increase nor a decrease during water deficit
(Smirnoff, 1993).

In this study, antioxidant activity was generally
altered in UV-B-treated plants, but the effect was
weaker than in drought-treated ones. Elevated SOD,
GPX and GR under excess UV-B radiation were
noted in cucumber cotyledons (Kataria et al., 2007),
winter wheat seedlings (Yang et al., 2007), mung
bean cultivars (Agraval and Rathore, 2007) and
spinach chloroplasts (Lei et al., 2008). The oxidative
stress conditions caused by different treatments
vary; they all seem to be related to overproduction of
reactive oxygen species, but they engage different
pathways of the antioxidant system for their removal
(Kubo et al., 1999).

The combination of two stresses, and drought,
elevated the activity of the investigated antioxidant
enzymes. The ratios of enzyme activation were sig-
nificantly lower than under water deficit or under
UV-B radiation separately, especially on later days of
co-treatment. These results suggest that these co-
stresses functioned synergistically, with one of them
reducing the changes caused by simultaneous appli-
cation of the other stress. Very few data are available
on the effects and interrelationships between
drought and ultraviolet-B radiation. Alexieva et al.
(2001) observed similar effects of co-stresses in pea
and wheat seedlings. In contrast, other parameters
were reduced by a combination of two stresses in
comparison with single stresses in spring wheat:
plant growth, photosynthetic capacity, pigment con-
tent, biomass and yield (Feng et al., 2007). We also
noted a decrease in leaf biomass (data not shown),
but an increase in dry weight, especially under UV-B
as compared with the other treatments, and this
could be related to increased cell wall rigidity. The
enhanced SPX activity suggests intensification of cell
wall component synthesis and a consequent

increase in cell wall rigidity, which can contribute to
drought tolerance (Clifford et al., 1998; Garciá at al.,
2000). The values of the physiological parameters
we measured indicate that the two environmental
stresses acted synergistically to trigger protective
mechanisms, activating the antioxidant system, but
that the application of either stress reduced the
effect of application of the other stress.

We suggest that in plants grown in the natural
environment, where usually more than one stress
factor prevails, the same effect should be expected:
the stressors will act synergistically.
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