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This short review emphasizes the importance of secreted molecules (peptides, proteins, arabinogalactan proteins, PR
proteins, oligosaccharides) produced by cells and multicellular structures in culture media. Several of these molecules
have also been identified in planta within the micro-environment in which the embryo and endosperm develop.
Questions are raised about the parallel between in vitro systems (somatic and androgenetic) and in planta zygotic
development. A view of exchanges between embryonic and nonembryonic multicellular structures in vitro is presented,
and several facts about embryo and endosperm molecular interactions in planta are reported. Analysis of in vitro
mechanisms may help in understanding what happens during zygotic embryogenesis.
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INTRODUCTION

Embryo development in plants starts after double fer-
tilization and leads to the formation of an embryo and
a second structure called the endosperm. They are both
situated within the growing seed. Although numerous
studies have been done, it is still unknown how an
embryo is formed (Goldberg et al., 1994; Matthys-Ro-
chon et al., 1997; Matthys-Rochon, 2002). Complex
mechanisms operating during embryogenesis enable
the development of a new plant. One obstacle in stud-
ying this development is the positioning of the embryo
and endosperm within the maternal tissues. They are
difficult to access for experimental manipulation, espe-
cially in very early stages of development.

One possible way to overcome this difficulty is to
study what happens during in vitro culture, such as
somatic and pollen embryogenesis. Somatic em-
bryogenesis is the process by which asexual (somatic)
cells develop into plants under in vitro conditions (Zim-
merman, 1993; Mordhorst et al., 1997). Pollen or micro-
spore embryogenesis, also referred to as androgenesis,
is a method of developing haploid embryo after stress
treatment (Touraev et al., 1997; Goralski et al., 1999).
After cell multiplication and differentiation, these two
systems generate embryos and subsequently plantlets

without fusion of gametes as in zygotic development.
In these in vitro cultures, the environment of the cells
mimics the conditions that exist in ovulo.

Besides hormones known to stimulate embryo for-
mation (Zimmerman, 1993; Matthys-Rochon et al.,
1998), other classes of molecules have been identified
as embryo-stimulating factors, especially those se-
creted into the culture medium. For many years, cell
and tissue culture researchers have recognized the
benefits of conditioned medium, in which cells have
been grown previously, for the establishment of new
cell lines or embryos (Halperin, 1966; Hari, 1980).

This review will focus on several groups of molecules
that have a promoting effect on in vitro embryo develop-
ment and which have been identified sometimes during
zygotic seed formation. Then basic zygotic development
will be compared with in vitro development in terms of
the interrelations between embryo and endosperm, and
between their in vitro counterparts.

OLIGOSACCHARIDES

The cell walls in plants are complex structures of
multiple carbohydrates and proteins. In addition to its
role as a structural framework, the cell wall serves as
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an extracellular matrix that contains signaling infor-
mation for plant growth and development (Chasan,
1992; Mohnen and Hahn, 1993; Fry et al., 1993;
Strauss, 1998; Sheen et al., 1999; Malinowski and
Filipecki, 2002). Oligosaccharides derived from the
plant cell wall have been identified in conditioned
medium in different cell suspension cultures, including
spinach (Fry, 1986), maize (Paire et al., 2003; Goralski
et al., 2002), tobacco (Sims et al., 1996) and rice (Inui
et al., 1996).

It is generally thought that the production of oli-
gosaccharides in culture medium is the result of carbo-
hydrate or glycoprotein splitting by cell wall enzymes.
The resulting oligosaccharides might contribute to the
nutrition of the developing structures, but also to the
control of the embryogenic process. Thus, endogenous
Nod-factor-like signal molecules have been shown to
promote early somatic embryo development in Norway
spruce (Dyachock et al., 2002). Wiweger et al. (2003)
demonstrated in this gymnosperm that lipophilic low
molecular weight molecules with Glc Nac residues are
secreted by embryogenic cultures. The data indicate
that lipo-chitinooligosaccharides (LCOs) homologous
with rhizobial Nod factors are present in plants and
stimulate proliferation of proembryogenic masses and
somatic embryo formation (Dyachock et al., 2002).

PEPTIDES

Signaling peptides have been identified and well stud-
ied in animals and more recently in plants (Ryan et al.,
2002). In plant cultures, only a few molecules are
known which act on cell division and/or embryo devel-
opment. Phytosulfokines (PSKs) are disulfated 4-5-
amino-acid peptides first isolated from Asparagus cell
suspension culture medium (Matsubayashi and Saka-
gami, 1996). In carrot somatic embryogenesis, Hanai
et al. (2000) demonstrated the presence of PSK in
conditioned medium of embryonic cell culture, and the
stimulating action of this sulfated peptide on embryo
formation. The authors showed that PSK is not capable
of inducing embryogenic competence but that its addi-
tion to an embryo-inducing culture increased the num-
ber of cells and accelerated somatic embryo formation.
PSK also stimulates somatic embryogenesis in
Cryptomeria japonica (Igasaki et al., 2003). The puta-
tive receptor proteins for this autocrine-type growth
factor were identified by photoaffinity labelling of plas-
ma membrane fractions derived from rice suspension
cells (Matsubayashi and Sakagami, 2000), and more
recently a PSK receptor has been purified from mem-
brane fractions of carrot cells (Matsubayashi et al.,
2002). Overexpression of this receptor-like kinase in
carrot cells enhances callus growth in response to PSK
and substantially increases the number of PSK-bind-
ing sites, indicating that PSK and this receptor-like

kinase act as a ligand-receptor pair. Now that the in
vitro function of PSK and the molecular basis of ligand-
receptor interaction in PSK signaling have been estab-
lished, the next phase of research is characterization
of the in vivo role of PSK and its downstream signaling
pathway in plants (Matsubayashi et al., 2002). This
study will provide the means to elucidate the mode of
action of these PSKs in embryogenesis in vitro.

Important studies have been done on polypeptide
hormones in plants (for review: Ryan et al., 2002). In
particular, the amino acid sequence of the polypeptide
RALF (Rapid Alkalinization Factor) has been deter-
mined. A search of databases revealed the existence of
RALF homologs in more than 15 plant species. This
polypeptide seems to have a role in development, espe-
cially in the germination of seeds. Although the func-
tion of these novel peptides remains unknown,
experiments suggest their role may be developmental.
We may thus suppose that this molecule acts on embryo
development (Pearce et al., 2001; Haruta and Consta-
bel 2003). 

ARABINOGALACTAN PROTEINS

Media conditioned by plant cell cultures contain the
small molecules mentioned above, but also larger ones
like arabinogalactan proteins (AGPs) and pathogen-
esis-related proteins (PR proteins). They have been
supposed to have a role in embryo formation. 

The AGPs are a family of proteoglycans with very
high carbohydrate content (90–98%) and consisting of
high levels of arabinosyl and galactosyl residues and
branched structures. In addition, their protein core is
rich in hydroxyproline, serine, alanine and glycine (van
Engelen and de Vries 1993; Showalter, 2001; Majew-
ska-Sawka and Nothnagel, 2000). AGPs are detected
with specific antibodies (Knox, 1997; Knox et al., 1991;
McCabe et al., 1997; Pennel et al., 1989; Smallwood et
al., 1995) or with β-Yariv reagent which binds to AGP
and can be used as an inhibitor (Yariv et al., 1962).
Briefly, in somatic embryogenesis, AGPs have been
identified in cell culture medium of carrot (Kreuger and
van Holst, 1993; McCabe et al., 1997), Chichorium
(Chapman et al., 2000), rose (Svetek et al., 1999) and
haploid cell cultures of barley (Paire et al., 2003) and
maize (Borderies et al., 2004) microspores. Variation
in the quantity of AGPs, their increase and subsequent
decrease during the course of culture, has suggested
that they are developmentally regulated, and it has
been demonstrated that embryo development is in-
hibited if their action is blocked by Yariv reagent (van
Hengel et al., 2002; Borderies et al., 2004). It is import-
ant to note that AGPs have also been detected in zygotic
development of carrot and maize (van Hengel et al.,
2002; Borderies et al., 2004), and they are secreted into
cultures of endosperm cells (Gleeson et al., 1989).
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PATHOGENESIS-RELATED (PR) PROTEINS

The enzymes (PR proteins; van Loon, 1990) that have
been detected in the cell culture media are mainly
glucanases, chitinases and thaumatins. In embryonic
suspension cells of barley, Kragh et al. (1991) isolated
three chitinases and one β-1,3-glucanase, some of them
having similarities to those present in barley grain.
β-1,3-glucanases have also been identified in Chicho-
rium somatic embryogenesis (Helleboid et al., 1998,
2000), and to our knowledge the only example of the
presence of β-1,3-glucanases in haploid development
has been shown in maize (Borderies et al., 2004). It is
known that the cell wall around embryonic cells contains
callose. The callose deposition disappears as embryos
grow. For this reason, it has been hypothesized that the
culture medium accumulates β-1,3-glucanases, which
may be responsible for degradation of the callose in the
cell wall of embryogenic cells. The corresponding genes
of these enzymes have been cloned, and their expres-
sion supports the hypothesis of a positive role of this
enzyme during somatic embryogenesis in Chichorium
(Helleboid et al., 2000). 

Another interesting example is the determination
and expression of Chia4-Pa chitinase genes during
both somatic and zygotic development in Norway
spruce (Picea abies). The presence and similarities of
chitinases in angiosperms and gymnosperms have
been reported, and a correlation between the increase
of activity of Chia4-Pa genes and the induction of
somatic embryos has been demonstrated (Wiweger et
al., 2003). Recently the presence of chitinases has been
detected in conditioned media of maize microspore
culture, but at the moment nothing is precisely known
about their role (Borderies et al., 2004). 

Thaumatins have been identified in maize micro-
spore embryonic suspension cultures and also in barley
(Osmond et al., 2001) and wheat (YU et al., 2003) seeds.
Thaumatins are PR proteins capable of binding and
hydrolyzing β-1,3-glucans (Trudel et al., 1998; Grenier
et al., 1999) and releasing oligosaccharides. 

In carrot somatic embryogenesis, conditioned media
has been reported to have a promoting effect on embryo
formation (Hari, 1980; Smith and Sung, 1985). During
the course of cultures, secreted proteins increase, and
among them EP1 (extracellular protein 1) is released by
nonembryogenic cells (van Engelen et al., 1993), whereas
EP2 is secreted only by embryonic cells (Sterk et al.,
1991). Another protein called EP3 was identified, corre-
sponding to a chitinase. De Jong et al. (1992) showed that
EP3 was able to rescue blocked mutant (ts11) embryos.
The chitinases have been thought to be involved in gener-
ation of signal molecules essential for embryogenesis (de
Jong et al., 1993). The responsible mechanism is largely
unknown. Interestingly, EP3 was also found in develo-
ping carrot seeds. Chitinases could be expected to play
a role in zygotic embryogenesis also.

The presence of EP3 may result in the generation
of GlcNAc-containing molecules that have a stimulating
effect on the development of somatic embryos, com-
pared to the action of chitinases capable of hydrolyz-
ing Nod factors (Staehelin et al., 1994). In another
species, Norway spruce, endogenous Nod-factor-like
signal molecules have been shown to promote embryo
development (Dyachock et al., 2002). Finally, it is
known that AGPs contain endochitinase cleavage
sites (Van Hengel et al., 1998; Showalter, 2001).
Thus, endochitinases can split AGPs and generate
small molecules like oligosaccharides which may be
signals to developing embryos. 

SIGNALING BETWEEN EMBRYO 
AND ENDOSPERM STRUCTURES

In planta, the embryo develops from the fertilized egg
cell (zygote), and the endosperm from the fertilized
central cell. In cultures in vitro, competent cells lead to
the formation of embryonic or nonembryonic structures
which in turn generate embryo-like structures and
endosperm-like structures in time. The question of
exchanges between these different cellular structures
arises, and painstaking research is needed to deter-
mine the role of secreted molecules in the two develop-
mental systems.

The interaction between the embryo and the en-
dosperm has been investigated mainly in terms of the
nutritive aspects of endosperm as an "embryo nourish-
ing tissue" (Schel et al., 1984; Lopes and Larkins,
1993). Indeed, endosperm seems to be absolutely re-
quired for the nourishment of young embryos (Fried-
man, 1995; Matthys-Rochon, 2002). Questions arise
about the active molecules that appear in vivo within
the microenvironment and promote normal develop-
ment. The dependence of early embryonic development
on the endosperm is also implied by apomictic studies
(Koltunow 1993; Bicknell and Koltunow, 2004). Has
the endosperm uniquely a nutritive role?

First, in somatic and haploid embryogenesis, the
occurrence of two populations of multicellular struc-
tures, termed embryogenic and nonembryogenic, has
been demonstrated. The idea has emerged of two
types of developing structures with different poten-
tialities: endosperm-like and embryo-like (Magnard
et al., 2000; Testillano et al., 2002; Massoneau et al.,
2005). Second, several molecules identified in the
medium of in vitro cultures are also present in the
developing seed. These molecules, AGPs (van Hengel
et al., 2002; Paire et al., 2003; Borderies et al., 2004),
PSK (Yang et al., 1999), chitinase, thaumatin and
β-1,3-glucanase (Kragh et al., 1991; Helleboid et al.,
1998, 2000; Borderies et al., 2004), are supposed to be
or to generate signal molecules which direct the fate of
cells (McCabe et al., 1997) and help to establish their
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embryonic competence and/or to direct the enlarge-
ment and further development of the embryo (Hanai et
al., 2000). 

In different species in culture, as reported above,
PR proteins have been identified which may have a
precise role in embryo development, associated with
their function. Endo-β-1,3-glucanases are thought to
produce oligosaccharides (Kragh et al., 1991; Helleboid
et al., 1998, 2000); thaumatins, which bind to β-1,3-,
may hydrolyze these carbohydrates (Trudel et al.,
1998; Osmond et al., 2001) and release oligogluco-
sides (Grenier et al., 1999). Chitinases, which have
been detected in different cell type cultures, can split
AGPs and release oligosaccharides (Showalter, 2001;
van Hengel et al., 2001). Thus, multicellular struc-
tures that secrete these different types of enzymes
can produce small molecules (signal molecules?)
which may intervene in embryo development. In
addition, oligosaccharides present in or produced in

culture media may be both signals and/or nutrients.
The possible mechanisms generating small carbohy-
drates are showed in Figure 1. Enzymes and AGPs
have been described in the surroundings of the develo-
ping embryo in planta (van Hengel et al., 1998; Masso-
neau et al., 2005), in endosperm (van Hengel et al.,
2002), or secreted by endosperm cells in culture (Mier-
nyk, 1987). Figure 2 summarizes the possible interac-
tions that may occur in planta between embryo and
endosperm, and compares them with what may happen
between embryogenic and nonembryogenic structures
in vitro.

This review and other data (Massoneau et al.,
2005) suggest that in vitro developing structures may
have endosperm or embryo potentialities, and may
interact through signal molecules which direct embryo
development. In this way, in vitro cultures mimic what
exists in planta.

Fig. 1. Enzymes secreted by cells into culture medium and their possible role. Left: AGPs are present on the membrane and
cell wall of cells in culture. They are released into the medium and may be hydrolyzed by endochitinases; oligosaccharides are
generated. Right: Other identified enzymes that produce small carbohydrates (mono-, oligosaccharides) which may be either
nutrients or signal molecules or both. The precise mechanisms that involve oligosaccharides in developmental processes are
unknown. 
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CONCLUSION

This review does not cover all the recent progress in
the study of plant signal molecules (Minorsky, 2003)
and their influence on embryological processes.

During the last decade, biochemical studies have
demonstrated that during embryo formation in plants,
different types of molecules, mainly oligosaccharides,
enzymes and arabinogalactan proteins (this review), are
synthesized and secreted into the cell environment, and
that they play a developmental role. Biochemical studies
will be completed with investigations of genes and mutant
strategies. Thus, the mechanisms involved in embryo
formation are soon likely to be elucidated more complete-
ly. Thus, the challenge in the coming years will be (1) to
determine the potential function of the stimulating mole-
cules, and (2) to identify the ligands and receptors that
take part in the construction of the embryo by stimulating

metabolic pathways which permit the differentiation
and growth of a new plantlet. 

The categories of molecules that have been cited
are embryo-stimulating factors, but the list is not com-
plete (Weber, 2002). Fatty acids are new candidates in
the search for signal molecules acting in plant develop-
ment and possibly on embryo formation. 

This review raises a crucial question: do the iden-
tified molecules present and important in development
in vitro also function during the development of zygotic
embryos? At the moment, the factors that act on cells
in vitro to make them behave like zygotes are unknown,
and the same applies to the specificity of substances
emanating from the endosperm. It seems likely that
the endosperm has two roles: to give nutrients to the
embryo and to direct its fate.

It is fascinating to think that cells in vitro seem to
invent processes similar to those that occur in planta.
This makes study and comparison of the two types of
development a powerful tool. Although in recent years
there has been much progress in understanding how a
plant embryo forms, there is still a long way to go.
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